List of Tables | Table 1. | | Selected fall chin | |-----------|--|---------------------------| | Table 2. | | List of available of | | Table 3. | | Transect designa | | Table 4. | Mean monthly temperatures of fish ladders at four Snake River dams from 1991 through 1994. | 103 | | Table 5. | Day Dam (JDA), McNary Dam (MCN), Ice Harbor Dam (IHR), Lower | Mean daily scroll | | | Monumental Dam (LMN), Little Goose Dam (LGS), and Lower Granite Dam (LWG). | 104 | | Table 6. | | Daily mean temp | | Table 7. | | Hydroelectric dar | | Table 8. | at Little Goose Dam (LGS), on 77 dates, August 16 – October 31, | Correlation coeffi | | | 1993 - 1996. | 112 | | Table 9. | Little Goose Dam (LGS) from August 16 – October 31, 1991 _ 1992. | Correlation coeffi
116 | | Table 10. | downstream (#15) of LWG. | Differences (degi
118 | | Table 11. | (#15) of IHR. | Differences (degi
119 | | Table 12. | | Mean annual Aug | | Table 13. | Migratory timing of fall chinook salmon in the Lower Snake River, 1963 – 1995. | 121 | Table 1. Selected fall chinook radio tagging recoveries compiled by the Snake River Laboratory of the Washington Department of Fish and Wildlife (Mendel et al. 1992) for the years 1991, 1992, and 1994. Days to pass each dam were calculated by subtracting the last detection from the first detection at each dam and adding 1 day. Days of migration were calculated by subtracting the first detection at the next upriver dam from the last detection at each dam and adding 1 day. | | LMN | | | | | LGS | | | | | LWG | | | | |-------|-------|--------------------|------|------|---------|-------|--------------------|------|------|---------|-------|-------|------|------| | chan/ | Ì | | # | days | days to | | | # | days | days to | | | # | days | | code | First | Last | Fish | to | migrate | First | Last | Fish | to | migrate | First | Last | Fish | to | | | | | Pass | pass | | | | Pass | pass | | | | Pass | pass | | | | | | | | | | | | | | | | | | 1/34 | 09/28 | 10/01 | 1 | 4 | 9 | 10/09 | 10/27 | 1 | 19 | 2 | 10/28 | 10/28 | 1 | 1 | | 1/44 | 10/30 | 11/05 | 1 | 7 | 2 | 11/06 | | | | | | | | | | 3/18 | 10/31 | 10/31 | 1 | 1 | 3 | 11/02 | 11/02 | 1 | 1 | 3 | 11/04 | 11/05 | 1 | 2 | | 2/4 | 11/06 | 11/10 | 1 | 5 | 5 | 11/14 | | | | | | | | | | 1/36 | 11/11 | 11/12 | 1 | 2 | 2 | 11/13 | 11/14 | 1 | 2 | 6 | 11/19 | | | | | 3/12 | 10/25 | 10/25 ¹ | | | 6 | 10/30 | | | | | | | | | | 1/26 | | | | | | 10/02 | 10/04 | 1 | 3 | 2 | 10/05 | 10/06 | 1 | 2 | | 2/43 | | | | | | 10/05 | 10/05 | 1 | 1 | 2 | 10/06 | | | | | 2/29 | | | | | | 11/10 | 11/10 | 1 | 1 | 2 | 11/11 | | | | | 1/28 | | | | | | 09/15 | 09/15 ^a | | | 3 | 09/17 | 09/19 | 1 | 3 | | 3/17 | | | | | | 09/17 | 09/17 ^a | | | 2 | 09/18 | 09/19 | 1 | 2 | | 2/48 | | | | | | 09/21 | 09/21a | | | 2 | 09/22 | 09/28 | 1 | 7 | | 3/14 | | | | | | 09/24 | 09/24a | | | 2 | 09/25 | 09/28 | 1 | 4 | | 3/20 | | | | | | 09/25 | 09/25a | | | 3 | 09/27 | 09/29 | 1 | 3 | | 1/49 | | | | | | | | | | | 10/22 | 10/23 | | 2 | ¹ The fish was only detected at the top of the fish ladder. Table 2. List of available data. (Temperature and velocity data collected from transects of lower Snake River reservoirs; counts of adult salmon at lower Snake River Dams; hydroelectric turbine scroll case water temperatures; hydroelectric project water flows; tri-level thermographs; fish ladder water temperatures; summary fall chinook radio tagging.) | Type of Data | Location
Collected | Source | Year | Duration | % Data
Missing | |---|---|---|--|---|--| | Tri Level
Thermograph
at Transect
14 | IHR pool, SR
Mile 15.5, 180
feet from the
right bank at
depths of 7,
37, and 75 feet | Data collected
by University
of Idaho.
Statistics by
CRITFC | 1991
1992
1993
1994
1995
1996 | 9/14-10/25
5/5-9/27
4/1-8/25
5/1-9/14
6/5-10/31
5/25-11/25 | 0.0
0.0
25.6
0.0
0.0
9.0 | | Tri Level
Thermograph
at Transect
11 | LMN pool, SR
Mile 44.0, 180
feet from the
right bank at
depths of 7,
43, and 85
feet. | Data collected
by University
of Idaho.
Statistics by
CRITFC | 1991
1992
1993
1994
1995
1996 | 9/13-10/31
5/5-8/20
4/1-8/25
5/1-10/30
6/5-10/31
5/25-12/14 | 0.0
0.0
0.0
20.0
13.2
0.0 | | Tri Level
Thermograph
at Transect 8 | LGS Pool, SR
Mile 80.5, 164
feet from the
right bank at
depths of 7,
40, and 80
feet. | Data collected
by University
of Idaho.
Statistics by
CRITFC | 1991
1992
1993
1994
1995
1996 | 9/13-10/31
5/5-9/28
4/1-8/25
5/1-10/31
6/16-12/7
5/26-12/24 | 2.0
0.0
0.0
8.5
12.9
0.0 | | Tri-Level
Thermograph
at Transect 5 | LWG Pool
SR Mile 110.5,
230 feet from
right bank at
depths of 7,
35, and 70 feet | Data collected
by University
of Idaho.
Statistics by
CRITFC | 1991
1992
1993
1994
1995
1996 | 8/28-10/31
5/5-9/28
4/1-9/9
4/28-10/31
8/28-10/31
5/26-10/31 | 0.0
11.3
0.0
0.0
0.0
0.0 | | Table 2 Type of Data | Location
Collected | Source | Year | Duration | % Data
Missing | |---|---|--|--|--|-----------------------------| | Transect temperatures and water velocities | 14 locations in
the Snake,
Clearwater and
Columbia
rivers (Table 3) | University of Idaho,
Validated by
CRITFC | 1991 | 25 days
over the
period
7/23-10/15 | 29.8 | | Transect
temperatures
and water
velocities | 14 locations in
the Snake,
Clearwater and
Columbia
rivers (Table 3) | University of Idaho,
Validated by
CRITFC | 1992 | 25 days
over the
period
7/5-10/13 | 24.8 | | Fish Ladder
Temperature | IHR-Top of
Ladder,
Bottom of
Ladder,
Tailrace | University of Idaho, Validated by CRITFC Unvalidated Unvalidated | 1991
1992
1993
1994
1995
1996 | 5/11 - 10/31
5/19 - 10/31
5/26 - 9/2
7/26 - 10/31 | 35.2
4.8
0.0
0.0 | | | LMN-Top of
Ladder,
Bottom of
Ladder,
Tailrace | University of Idaho, Validated by CRITFC Unvalidated Unvalidated | 1991
1992
1993
1994
1995
1996 | 8/30 - 10/31
5/19 - 10/31
5/26 - 9/2
5/26 - 9/2 | 41.8
14.5
8.7
45.5 | | | LGS-Top of
Ladder,
Bottom of
Ladder,
Tailrace | University of Idaho, Validated by CRITFC Unvalidated Unvalidated | 1991
1992
1993
1994
1995
1996 | 8/30 - 10/31
6/9 - 10/31
5/27 - 9/3
7/25 - 10/31 | 2.1
0.0
0.0
0.3 | | | LWG-Top of
Ladder,
Bottom of
Ladder, | University of Idaho, Validated by CRITFC | 1991
1992
1993
1994 | 5/25 - 10/31
6/9 - 10/31
5/28 - 9/3
7/25 - 10/31 | 31.1
0.0
0.0
5.7 | Ladder, Tailrace | Table 2 Type of Data | Location | Source | Year | Duration | % Data | |---|---|---|-----------------------|------------------------------------|------------| | | Collected | | | | Missing | | Fish Ladder
Temperature | LWG-Top of
Ladder,
Bottom of
Ladder,
Tailrace | Unvalidated | 1995 | | | | | | Unvalidated | 1996 | | | | Scroll case
Temperature ² | IHR ³ | USACE-Some
data validated
or corrected
by CRITFC | 1962-
1996 | 4/1-10/31
annually | Negligible | | | LMN ⁴ | • | 1972- | 4/1-10/31 | Negligible | | | LGS ⁵ | | 1996
1972-
1996 | annually
4/1-10/31
annually | Negligible | | | LWG ⁶ | | 1975-
1996 | 4/1-10/31 | Negligible | | | DWR ⁷ | | 1990
1991-
1996 | annually
4/1-10/31
annually | Negligible | | Ladder Fish
Counts | IHR | FISHCOUNT
database-vali
dated by this
project | 1962-
1996 | Generally
4/1-10/31
annually | Negligible | _ ² Scrollcase temperatures are normally recorded throughout the year at all USACE projects. However, we only compiled data from April 1 through October 31 annually. ³ Mercury thermometers are installed on two units; readings are taken from the operating unit (NMFS Memo). ⁴ Mercury thermometers are installed on two units; readings are taken from the operating unit (NMFS Memo). ⁵ Digital thermometer located in fishway sends readings to control room. Readings come from fishway as of 1996 season (NMFS memo). ⁶ Digital thermometer located at charged cooling water strainer (takes water temperature reading from lower river depths) (NMFS memo). Prior to 1996, "scroll case" temperatures came from both fishways and scroll case for as long as five years(Tanovan Bolyvong personal communication). ⁷ Since about 1995 DWR "scroll case" temperatures are the temperature originating from the TDG station at the hatchery. Prior to this, data came from the cooling water intakes located in the project tailrace on the turbine side of the river. (Tanovan Bolyvong, USACE personal communication) | Table 2 | | | | | | |--------------------------------|---|--|---------------
------------------------------------|-------------------| | Type of Data | Location
Collected | Source | Year | Duration | % Data
Missing | | Ladder Fish
Counts | LMN | FISHCOUNT
database-vali
dated by this
project | | Generally
4/1-10/31
annually | Negligible | | | LGS | , , | | Generally
4/1-10/31
annually | Negligible | | | LWG | | | Generally
4/1-10/31
annually | Negligible | | Tributary
Data | | Idaho Power | | | | | Gas Bubble
Trauma
Meters | IHR- Forebay
Station in
center of river
15.0' below
average
forebay levels | Total
dissolved gas
monitoring
program | 1993-
1996 | 4/1-9/30 | 8.2 | | | LMN-Forebay
station located
in center of
river near the
north end of
spillway 15.0'
below average
forebay levels | | 1993-
1996 | 4/1-9/30 | 6.1 | | | LGS-Forebay
station located
in center of
river near the
north end of
spillway 15.0'
below average
forebay levels | | 1993-
1996 | 4/1-9/30 | 15.8 | | Table 2 Type of Data | Location
Collected | Source | Year | Duration | % Data
Missing | |--------------------------------|--|---|---------------|----------|-------------------| | Gas Bubble
Trauma
Meters | LWG-Station
located in
center of river
just north of
spillway 15.0'
below average
forebay levels | Total
dissolved gas
monitoring
program | 1993-
1996 | 4/1-9/30 | 4.4 | Table 3. Transect designation, station description, and location (river mile) of temperature transect and tri-level thermograph stations in the Snake, Clearwater, and Columbia rivers. | Transect | Station Description | River Mile Location | |---------------------|--|-------------------------------------| | 1A
1B
1C
1 | North Fork Clearwater River
Clearwater river above N. Fork
Clearwater River below N. Fork
Snake River above Clearwater
Clearwater near mouth | 1.3
41.5
39.5
140.5
0.8 | | 3
4
5 | Lower Granite Reservoir Lower Granite Reservoir Lower Granite Reservoir (transect and tri-level thermographs) Lower Granite Dam | 129.5
119.5
110.5 | | 6
7
8 | Little Goose Reservoir Little Goose Reservoir Little Goose Reservoir (transect and tri-level thermographs) Little Goose Dam | 101.0
91.5
80.5
70.0 | | 9
10
11 | Lower Monumental Reservoir Lower Monumental Reservoir Lower Monumental Reservoir (transect and tri-level thermographs) Lower Monumental Dam | 65.0
57.5
44.0 | | 12
13
14 | Ice Harbor Reservoir Ice Harbor Reservoir Ice Harbor Reservoir (transect and tri-level thermographs) Ice Harbor Dam | 35.5
25.0
15.5 | | 15 | Snake River Below Ice Harbor
Dam | 5.0 | | 16 | Columbia River below Snake R. | Columbia R.M.
323.5 | Table 4. Mean monthly temperatures of fish ladders at four Snake River dams from 1991 through 1994. Temperatures were recorded at the upper and lower ends of the fish ladders and at the tailrace of each dam (T. Bjornn, University of Idaho, personal communication). | | | | 1991 | | | 1992 | | | 1993 | | | 1994 | | |---------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------|----------|-------|-------| | Project | Month | Tailrace | Lower | Upper | | | | | | | | | | | | | | | | | IHR | Aug | 72.4 | 75.1 | | 69.6 | 71.6 | 71.7 | 67.0 | 67.6 | 68.1 | 67.1 | 68.7 | 69.1 | | | Sep | 68.6 | 72.1 | 68.2 | 67.4 | 69.7 | 67.7 | 66.3 | 67.7 | 67.7 | 68.0 | 68.7 | 68.4 | | | Oct | 60.9 | 65.6 | 63.8 | 60.3 | 60.8 | 60.7 | | | | 63.0 | 63.1 | 62.9 | | | | | | | | | | | | | | | | | LMN | Aug | 72.4 | | 72.9 | 69.2 | 71.0 | 71.4 | 66.5 | 67.6 | 68.3 | 65.1 | 67.6 | 67.6 | | | Sep | 69.5 | | 69.1 | 70.2 | 67.0 | 67.6 | 67.0 | 67.4 | 68.0 | 68.2 | 68.9 | 69.0 | | | Oct | 60.3 | | 60.7 | | 59.9 | 60.3 | | | | | 58.5 | 62.8 | | | | | | | | | | | | | | | | | LGS | Aug | | 72.6 | 73.2 | 70.0 | 72.0 | 72.2 | 66.5 | 68.0 | 68.0 | 65.3 | 67.1 | 67.6 | | | Sep | 66.8 | 68.1 | 68.4 | 66.0 | 66.5 | 66.3 | 68.1 | 69.0 | 68.9 | 69.0 | 69.5 | 69.8 | | | Oct | 60.2 | 60.8 | 60.7 | 59.6 | 60.2 | 59.9 | | | | 62.3 | 62.8 | 63.0 | | | | | | | | | | | | | | | | | LWG | Aug | 69.9 | 74.3 | 75.1 | 71.1 | 73.6 | 73.8 | 66.5 | 68.4 | 68.9 | 67.6 | 71.5 | 70.7 | | | Sep | 66.0 | 66.6 | 67.3 | 62.7 | 65.9 | 65.5 | 66.2 | 69.0 | 69.8 | 68.4 | 69.4 | 68.2 | | | Oct | 60.7 | 64.6 | 62.2 | 59.5 | 60.5 | 60.4 | | | | 61.3 | 61.6 | 61.8 | Table 5. Mean daily scroll case temperatures recorded during the fall chinook immigration followed by the range of years and number of years (N) on which it is based for Bonneville Dam (BON), The Dalles Dam (TDA), John Day Dam (JDA), McNary Dam (MCN), Ice Harbor Dam (IHR), Lower Monumental Dam (LMN), Little Goose Dam (LGS), and Lower Granite Dam (LWG). | Date | BON | TDA | JDA | MCN | IHR | LMN | LGS | LWG | |----------------|------|------|------|------|--------------|--------------|--------------|------| | 1-Aug | 70.2 | 68.8 | 67.8 | 68.2 | 70.1 | 69.2 | 70.7 | 70.3 | | 2-Aug | 70.2 | 69.5 | 68.1 | 68.4 | 70.1 | 69.3 | 70.7 | 70.3 | | 2-Aug
3-Aug | 70.2 | 69.3 | 68.0 | 68.5 | 70.3 | 69.3 | 70.4 | 70.4 | | 3-Aug
4-Aug | 70.2 | 69.6 | 68.6 | 68.6 | 70.5 | 69.3 | 70.6 | 70.8 | | 4-Aug
5-Aug | 70.3 | 69.5 | 68.6 | 68.6 | 70.6 | 69.6 | 70.7 | 70.2 | | J-Aug | 70.3 | 09.5 | 00.0 | 00.0 | 70.0 | 09.0 | 10.1 | 70.0 | | 6-Aug | 70.7 | 70.2 | 68.6 | 68.7 | 70.6 | 69.7 | 70.8 | 70.7 | | 7-Aug | 70.7 | 70.1 | 68.4 | 68.9 | 70.6 | 69.8 | 70.7 | 70.9 | | 8-Aug | 70.9 | 69.8 | 68.5 | 68.8 | 70.8 | 70.0 | 70.7 | 71.2 | | 9-Aug | 70.6 | 69.9 | 68.5 | 69.0 | 70.9 | 70.2 | 71.4 | 71.3 | | 10-Aug | 70.6 | 70.2 | 69.0 | 69.2 | 71.0 | 70.2 | 71.3 | 71.2 | | 11 Δυσ | 70.8 | 70.0 | 69.0 | 69.3 | 71.0 | 70.5 | 71.4 | 71.4 | | 11-Aug | 70.8 | 70.0 | 69.0 | 69.3 | 71.0 | 70.5 | 71.4 | 71.4 | | 12-Aug | | | | | | | | | | 13-Aug | 70.9 | 70.3 | 68.8 | 69.3 | 71.3
71.1 | 70.6
71.0 | 71.3
71.4 | 71.8 | | 14-Aug | 71.0 | 70.6 | 68.9 | 69.5 | ! | | ļ. | 71.5 | | 15-Aug | 71.0 | 70.4 | 68.9 | 69.3 | 71.2 | 70.7 | 71.4 | 71.1 | | 16-Aug | 70.9 | 70.6 | 69.2 | 69.3 | 71.3 | 70.7 | 71.4 | 71.4 | | 17-Aug | 70.9 | 70.5 | 68.4 | 69.2 | 71.4 | 70.8 | 71.4 | 71.5 | | 18-Aug | 70.9 | 70.6 | 69.1 | 69.1 | 71.3 | 70.8 | 71.4 | 71.6 | | 19-Aug | 70.9 | 70.3 | 68.6 | 69.2 | 71.3 | 70.7 | 71.4 | 71.3 | | 20-Aug | 70.8 | 70.2 | 68.9 | 69.2 | 71.1 | 70.7 | 71.4 | 71.5 | | 21-Aug | 70.7 | 70.5 | 69.1 | 69.2 | 71.1 | 70.7 | 71.6 | 71.5 | | 22-Aug | 70.6 | 70.3 | 69.1 | 69.3 | 71.1 | 70.7 | 71.5 | 71.4 | | 23-Aug | 70.7 | 70.3 | 69.1 | 69.1 | 71.1 | 70.8 | 71.3 | 70.9 | | 24-Aug | 70.4 | 70.0 | 68.5 | 69.2 | 71.1 | 70.7 | 71.1 | 70.9 | | 25-Aug | 70.4 | 70.2 | 68.9 | 69.1 | 71.0 | 70.8 | 71.1 | 70.7 | | _5 / 149 | | | 00.0 | | | . 3.3 | | | | 26-Aug | 70.2 | 70.0 | 68.4 | 69.1 | 70.9 | 70.8 | 71.0 | 70.3 | | 27-Aug | 70.3 | 69.9 | 68.6 | 69.0 | 70.9 | 70.8 | 71.0 | 70.5 | | 28-Aug | 70.7 | 70.0 | 68.4 | 68.9 | 70.8 | 70.7 | 70.9 | 69.9 | |29-Aug |70.2 |69.8 |68.4 |69.1 |70.7 |70.8 |70.9 |69.7 | Table 5
Date | BON | TDL | JDA | MCN |
 IHR | LMN | LGS | LWG | |-----------------|------|------|------|------|----------|------|------|------| | | | | | | | | | | | 30-Aug | 70.1 | 69.7 | 68.1 | 68.7 | 70.6 | 70.7 | 70.9 | 69.4 | | 31-Aug | 70.2 | 69.9 | 68.4 | 68.6 | 70.4 | 70.7 | 70.7 | 69.0 | | 1-Sep | 70.0 | 69.7 | 67.8 | 68.7 | 70.4 | 70.5 | 70.6 | 69.1 | | 2-Sep | 70.1 | 69.0 | 68.1 | 68.5 | 70.2 | 70.3 | 70.5 | 69.0 | | 3-Sep | 70.0 | 68.9 | 67.9 | 68.4 | 70.2 | 70.2 | 70.2 | 68.9 | | 4-Sep | 69.9 | 69.1 | 68.0 | 68.3 | 70.1 | 70.1 | 69.9 | 69.0 | | 5-Sep | 69.7 | 68.9 | 68.0 | 68.1 | 70.0 | 69.9 | 69.8 | 69.0 | | 6-Sep | 69.5 | 68.9 | 68.3 | 68.0 | 69.9 | 69.7 | 69.6 | 68.5 | | 7-Sep | 69.4 | 69.0 | 67.6 | 68.0 | 69.7 | 69.5 | 69.6 | 68.5 | | 8-Sep | 69.4 | 69.1 | 67.8 | 67.8 | 69.7 | 69.4 | 69.4 | 68.4 | | 9-Sep | 69.0 | 68.8 | 67.5 | 67.7 | 69.4 | 69.3 | 69.2 | 68.5 | | 10-Sep | 69.0 | 69.0 | 67.8 | 67.8 | 69.1 | 69.3 | 69.1 | 68.0 | | 11-Sep | 69.0 | 68.7 | 67.3 | 67.8 | 69.0 | 68.9 | 68.8 | 67.8 | | 12-Sep | 68.5 | 68.5 | 67.2 | 67.7 | 68.7 | 68.7 | 68.6 | 67.5 | | 13-Sep | 68.4 | 68.2 | 67.3 | 67.6 | 68.6 | 68.5 | 68.4 | 67.2 | | 14-Sep | 68.3 | 68.2 | 66.8 | 67.4 | 68.5 | 68.2 | 68.1 | 66.9 | | 15-Sep | 68.0 | 68.3 | 66.6 | 67.4 | 68.3 | 67.9 | 68.0 | 66.9 | | 16-Sep | 68.3 | 68.0 | 66.0 | 67.4 | 68.2 | 67.8 | 67.7 | 66.5 | | 17-Sep | 67.9 | 67.6 | 66.3 | 67.1 | 68.0 | 67.7 | 67.4 | 66.3 | | 18-Sep | 67.3 | 67.6 | 65.9 | 66.8 | 67.6 | 67.3 | 67.2 | 65.9 | | 19-Sep | 67.6 | 67.0 | 64.8 | 66.7 | 67.3 | 67.2 | 67.0 | 65.7 | | 20-Sep | 67.6 | 67.1 | 65.0 | 66.6 | 67.1 | 67.0 | 67.1 | 65.3 | | 21-Sep | 67.3 | 66.8 | 64.8 | 66.5 | 67.1 | 66.6 | 66.8 | 65.0 | | 22-Sep | 67.1 | 66.7 | 65.1 | 66.1 | 66.7 | 66.3 | 66.4 | 64.8 | | 23-Sep | 66.6 | 66.6 | 64.3 | 65.8 | 66.5 | 66.1 | 66.1 | 64.7 | | 24-Sep | 66.7 | 66.5 | 65.2 | 65.6 | 66.3 | 65.8 | 65.6 | 64.5 | | 25-Sep | 66.5 | 66.2 | 64.6 | 65.6 | 65.9 | 65.6 | 65.1 | 64.3 | | 26-Sep | 65.8 | 66.2 | 64.5 | 65.2 | 65.6 | 65.6 | 64.9 | 63.9 | | 27-Sep | 66.3 | 66.3 | 64.9 | 65.1 | 65.3 | 65.2 | 64.7 | 63.7 | | 28-Sep | 66.3 | 65.9 | 64.3 | 64.9 | 65.3 | 65.0 | 64.4 | 63.6 | | 29-Sep | 65.9 | 65.4 | 63.9 | 64.8 | 65.1 | 64.6 | 64.2 | 63.2 | | 30-Sep | 65.6 | 64.9 | 63.7 | 64.6 | 65.1 | 64.5 | 64.1 | 63.0 | | 1-Oct | 65.4 | 65.0 | 63.7 | 64.4 | 64.7 | 64.3 | 63.8 | 63.0 | |2-Oct |65.2 |64.8 |63.4 |64.2 |64.5 |64.2 |63.5 |62.8 | Table 5 | | | | | | | | | |---------|---------|---------|---------|---------|---------|---------|---------|---------| | Date | BON | TDL | JDA | MCN | IHR | LMN | LGS | LWG | | | | | | | | | | | | 3-Oct | 65.0 | 64.2 |
63.3 | 63.9 | 64.3 | 63.9 | 63.0 | 62.4 | | 4-Oct | 64.6 | 64.4 | 62.6 | 63.8 | 64.0 | 63.7 | 63.0 | 62.4 | | 5-Oct | 64.2 | 63.9 | 62.8 | 63.4 | 63.9 | 63.3 | 62.9 | 61.8 | | 6-Oct | 64.1 | 63.8 | 62.2 | 63.2 | 63.7 | 63.0 | 62.7 | 61.5 | | 7-Oct | 63.7 | 63.6 | 62.4 | 63.0 | 63.4 | 62.9 | 62.6 | 61.2 | | 8-Oct | 63.5 | 63.4 | 61.8 | 62.8 | 63.2 | 62.5 | 62.4 | 61.1 | | 9-Oct | 63.4 | 63.2 | 61.6 | 62.6 | 63.0 | 62.2 | 62.2 | 60.8 | | 10-Oct | 63.1 | 62.7 | 61.6 | 62.5 | 62.7 | 62.0 | 61.7 | 60.5 | | 11-Oct | 62.8 | 62.6 | 61.1 | 62.2 | 62.4 | 61.7 | 61.7 | 60.3 | | 12-Oct | 62.5 | 62.2 | 60.2 | 61.9 | 62.1 | 61.4 | 61.4 | 60.2 | | 13-Oct | 62.6 | 62.1 | 60.8 | 61.6 | 61.9 | 61.2 | 61.1 | 60.0 | | 14-Oct | 62.0 | 61.6 | 61.0 | 61.3 | 61.4 | 60.9 | 60.9 | 60.0 | | 15-Oct | 61.8 | 61.4 | 60.2 | 60.9 | 61.3 | 60.6 | 60.5 | 59.8 | | 16-Oct | 61.5 | 61.4 | 60.2 | 60.6 | 60.9 | 60.5 | 60.3 | 59.8 | | 17-Oct | 61.2 | 61.0 | 60.4 | 60.4 | 60.6 | 60.1 | 59.9 | 59.2 | | 18-Oct | 61.2 | 60.7 | 59.6 | 60.3 | 60.3 | 59.8 | 59.8 | 59.0 | | 19-Oct | 60.5 | 60.3 | 59.3 | 60.1 | 59.9 | 59.5 | 59.5 | 58.5 | | 20-Oct | 60.4 | 60.5 | 59.0 | 59.6 | 59.4 | 59.3 | 59.2 | 58.3 | | 21-Oct | 60.3 | 60.2 | 58.7 | 59.3 | 59.2 | 58.9 | 58.9 | 58.1 | | 22-Oct | 60.1 | 59.9 | 58.2 | 59.1 | 58.9 | 58.8 | 58.5 | 57.5 | | 23-Oct | 59.9 | 59.1 | 58.1 | 58.8 | 58.6 | 58.5 | 58.3 | 57.3 | | 24-Oct | 59.5 | 59.1 | 57.6 | 58.6 | 58.4 | 58.2 | 58.1 | 57.1 | | 25-Oct | 59.5 | 58.9 | 57.5 | 58.2 | 58.2 | 58.0 | 57.8 | 56.8 | | 26-Oct | 59.1 | 58.5 | 58.2 | 58.1 | 57.8 | 57.8 | 57.5 | 56.5 | | 27-Oct | 58.7 | 58.4 | 57.1 | 57.9 | 57.6 | 57.5 | 57.2 | 56.0 | | 28-Oct | 58.6 | 58.2 | 57.0 | 57.4 | 57.3 | 57.2 | 57.3 | 55.8 | | 29-Oct | 58.4 | 57.6 | 56.8 | 57.2 | 56.9 | 56.8 | 57.0 | 55.6 | | 30-Oct | 57.6 | 57.3 | 56.9 | 57.0 | 56.8 | 56.5 | 56.4 | 55.4 | | 31-Oct | 57.4 | 57.1 | 56.0 | 56.8 | 56.5 | 56.3 | 56.2 | 55.1 | | Range | 1981-19 | 1981-19 | 1981-19 | 1960-19 | 1963-19 | 1971-19 | 1970-19 | 1975-19 | | | 95 | 95 | 95 | 96 | 96 | 96 | 96 | 96 | | N | 15 | 15 | 15 | 37 | 34 | 26 | 27 | 22 | Table 6. Daily mean temperatures from the total dissolved gas monitoring program in the Snake River. Gas bubble trauma monitoring stations are located above the dams (1993 _ 1996). | | ICE H | HARBO | OR | | LO | W | ER | | | - | LITTI | LE GC | OSE | | | LOW | ER GI | RANIT | E | |--------|-------|-------|------|------|-----|----|------|------|------|---|-------|-------|------|------|-----|------|-------|-------|------| | | | | | | MC | N | UMEN | ITAL | | | | | | | | | | | | | DATE | 1993 | 1994 | 1995 | 1996 | 199 | 93 | 1994 | 1995 | 1996 | | 1993 | 1994 | 1995 | 1996 | | 1993 | 1994 | 1995 | 1996 | 1-Aug | 66.5 | 71.9 | 72.4 | 71.1 | 67. | 3 | 69.0 | 72.6 | 70.5 | | 66.4 | 67.6 | | 71.4 | | 67.3 | 69.0 | 72.6 | 70.5 | | 2-Aug | 67.6 | 73.0 | 72.1 | 70.9 | 69. | 4 | 69.5 | 72.8 | 70.3 | | 69.7 | 66.5 | | 70.4 | | 69.4 | 69.5 | 72.8 | 70.3 | | 3-Aug | 67.9 | 72.8 | 72.5 | 70.8 | 69. | 7 | 68.4 | 72.4 | 70.2 | | 72.1 | 65.8 | | 70.4 | | 69.7 | 68.4 | 72.4 | 70.2 | | 4-Aug | 68.3 | 73.0 | 72.5 | 70.3 | 68. | 0 | 68.2 | 71.5 | 69.8 | | 69.3 | 65.6 | | 70.3 | | 0.86 | 68.2 | 71.5 | 69.8 | | 5-Aug | 68.6 | 72.2 | 72.4 | 69.7 | 69. | 1 | 66.4 | 71.4 | 69.2 | | 68.6 | 62.9 | | 69.8 | (| 69.1 | 66.4 | 71.4 | 69.2 | 6-Aug | 69.4 | 70.6 | 72.7 | 69.3 | 69. | 3 | 66.9 | 71.9 | 68.9 | | 69.6 | 63.4 | | 69.3 | (| 69.3 | 66.9 | 71.9 | 68.9 | | 7-Aug | 68.9 | 72.5 | 72.6 | | | | | 71.2 | | | 68.6 | 65.9 | | 69.8 | (| 8.86 | 69.8 | 71.2 | 69.6 | | _ | : | 70.0 | | | | | | 71.1 | | ! | 1 | 64.8 | | | !! | | | 71.1 | | | - | 1 | 70.8 | | | 1 | | | 71.0 | | ! | 1 | 65.7 | | | : : | | | 71.0 | | | 10-Aug | 69.0 | 71.8 | 71.3 | | 69. | 0 | 69.0 | 71.4 | 71.7 | | 69.3 | 66.7 | 70.8 | 73.2 | (| 69.0 | 69.0 | 71.4 | 71.7 | | | ļ | 11-Aug | • | | | | | | | 70.6 | | | 1 | 67.7 | | | : : | | | 70.6 | | | 12-Aug | | | | | | | | 70.6 | | ! | 68.7 | | | | | | | 70.6 | | | 13-Aug | | | | : | | | | 72.0 | | ! | 1 | 68.2 | | | : : | | | 72.0 | | | 14-Aug | | | | | | | | 72.5 | | ! | 1 | 68.0 | | | !! | | | 72.5 | | | 15-Aug | 69.6 | 71.8 | 70.3 | 70.6 | 70. | 7 | 68.1 | 72.5 | 70.1 | | 68.3 | 66.1 | 69.1 | 68.3 | | 70.7 | 68.1 | 72.5 | 70.1 | | | | | | _ | | | | | | | | | | | | | | | | | 16-Aug | 1 | | | - | | | | | 70.7 | | 1 | | | 68.4 | : : | | | 75.1 | | | 17-Aug | | | | | 69. | | | | 70.6 | ! | 1 | 67.9 | | | | | | 75.2 | | | 18-Aug | 69.4 | 73.3 | 69.9 | 67.2 | 70. | 7 | 70.5 | 73.4 | 70.0 | | 69.6 | 69.5 | 68.4 | 67.9 | | 70.7 | 70.5 | 73.4 | 70.0 | | Table 6 | | | | | |---|--|--|--|--| | | ICE HARBOR | LOWER
MONUMENTAL | LITTLE GOOSE | LOWER GRANITE | | DATE | 1993 1994 1995 1996 | 1993 1994 1995 1996 | 1993 1994 1995 1996 | 1993 1994 1995 1996 | | _ | 69.3 72.3 69.6 67.0
69.1 71.9 69.5 66.8 | 71.2 69.6 72.1 69.9
69.1 68.7 72.7 69.5 | 70.2 70.4 68.8 67.5
68.8 69.5 68.4 67.2 | 71.2 69.6 72.1 69.9
69.1 68.7 72.7 69.5 | | 22-Aug
23-Aug
24-Aug | 69.4 71.6 70.1 66.7
69.6 73.3 70.2 66.9
69.3 73.8 69.9 66.6
69.0 73.0 70.1 66.6
68.8 72.5 69.9 66.8 | 68.9 68.9 73.5 69.7
70.5 68.9 70.9 70.5
70.4 69.4 69.8 70.7
69.8 70.0 69.0 71.0
68.4 69.8 69.3 70.9 | 68.4 69.7 68.1 67.9
69.3 69.2 68.7 68.4
69.9 69.9 68.4 68.4
69.5 70.4 66.9 68.3
69.4 71.1 68.4 70.1 | 68.9 68.9 73.5 69.7
70.5 68.9 70.9 70.5
70.4 69.4 69.8 70.7
69.8 70.0 69.0 71.0
68.4 69.8 69.3 70.9 | | 27-Aug
28-Aug
29-Aug
30-Aug | 68.6 73.3 69.7 66.9
68.5 72.2 69.7 66.8
68.6 74.5 69.4 66.5
68.6 73.7 68.8 66.6
68.9 72.4 68.6 66.1
69.0 73.8 69.1 65.3 | 65.6 69.8 68.8 70.7
66.1 71.0 69.5 68.9
68.6 71.0 69.5 68.8
69.0 70.3 69.3 69.8
69.6 70.8 70.0 68.4
68.8 71.9 71.1 67.4 | 69.4 71.6 67.3 70.7
69.6 72.3 68.3 69.0
69.1 72.9 67.7 68.0
70.1 71.3 66.6 68.7
70.9 71.8 67.6 67.1
70.5 72.4 68.6 63.8 | 65.6 69.8 68.8 70.7
66.1 71.0 69.5 68.9
68.6 71.0 69.5 68.8
69.0 70.3 69.3 69.8
69.6 70.8 70.0 68.4
68.8 71.9 71.1 67.4 | | 1-Sep
2-Sep
3-Sep
4-Sep
5-Sep | 69.2 75.5 69.6 65.1
69.0 75.1 68.5 65.5
70.5 74.3 69.1 64.5
69.4 73.9 68.4 63.4
71.0 72.9 69.0 62.8 | 68.4 72.1 71.2 66.7
68.8 70.7 71.3 66.3
70.2 70.3 72.3 65.8
69.4 69.9 69.6 65.3
70.4 71.0 69.1 65.0 | 70.6 72.8 69.1 63.8
70.1 72.1 70.1 64.3
71.5 71.5 72.1 63.7
71.1 71.3 69.3 61.9
71.4 71.8 67.2 61.0 | 68.4 72.1 71.2 66.7
68.8 70.7 71.3 66.3
70.2 70.3 72.3 65.8
69.4 69.9 69.6 65.3
70.4 71.0 69.1 65.0 | | Table 6 | : | HARB | OR | | | WER
NUM | ENTA | L | | | LITTLE GOOSE 96 1993 1994 1995 1996 | | | | LOWER GRANITE | | | | | |---------|------|------|------|------|------|-------------|------|----|------|---|--|------|------|------|---------------|----------|------|------|------| | DATE | 1993 | 1994 | 1995 | 1996 | 199 | 3 199 | 4 19 | 95 | 1996 | j | 1993 | 1994 | 1995 | 1996 | | 1993 | 1994 | 1995 | 1996 | | | | | | | | | | | | | ļ | | | | | ļ | | | | | 6-Sep | 70.5 | | | 62.8 | : | | | | 65.1 | | | | | 61.3 | | ! | 71.1 | | | | 7-Sep | 71.0 | | | | | | | | 65.2 | | 1 | 71.6 | 68.1 | | | | 71.1 | | | | 8-Sep | : | | | | : | | | | 65.0 | : | 71.5 | | | 61.8 | | ! | 70.8 | | | | • | 1 | | | 63.2 | | | | | 64.9 | | 71.4 | | | 61.9 | | ! | 70.3 | | | | 10-Sep | 70.8 | 72.3 | 69.0 | 63.7 | 70.9 | 70. | 1 68 | .7 | 65.6 | | 71.9 | | 69.1 | 62.5 | | 70.9 | 70.1 | 68.7 | 65.6 | | 11-Sep | 70.2 | 74.5 | 69.0 | 63.3 | 69.7 | 70. | 4 68 | .7 | 66.5 | | 69.3 | | 69.3 | 62.9 | | 69.7 | 70.4 | 68.7 | 66.5 | | 12-Sep | 70.1 | 72.4 | 70.2 | 62.9 | 69.3 | 7 0. | 3 70 | .1 | 65.3 | | 69.0 | | 69.9 | 63.2 | | 69.3 | 70.3 | 70.1 | 65.3 | | 13-Sep | 1 | | | | 69.3 | 7 0. | 5 71 | .6 | 64.2 | | 69.5 | | 70.3 | 62.1 | | 69.3 | 70.5 | 71.6 | 64.2 | | 14-Sep | 69.8 | 74.7 | 71.1 | 61.8 | 68.8 | 3 70. | 1 71 | .8 | 64.4 | | 69.2 | | 71.1 | 62.2 | | 68.8 | 70.1 | 71.8 | 64.4 | | 15-Sep | 69.6 | 73.5 | 70.7 | 61.7 | 68.6 | 70. | 71 | .9 | 64.3 | | | | 71.7 | 62.3 | | 68.6 | 70.0 | 71.9 | 64.3 | | 16-Sep | 69.5 | 74.0 | 69.8 | 61.4 | 68.6 | s 70. | 3 71 | .8 | 64.2 | | 68.8 | | 70.8 | 61.9 | | 68.6 | 70.3 | 71.8 | 64.2 | | 17-Sep | : | | | | | | | | 64.3 | ļ | | | 70.3 | | | | 71.0 | | | | 18-Sep | | | | | | | | | 64.3 | | 68.5 | | 69.3 | | | | 70.9 | | | | 19-Sep | | | | | | | | | 64.0 | | | | 69.7 | | | | 71.1 | | | | 20-Sep | | | | | 66. | 70. | 7 71 | .6 | 63.5 | | | | 69.9 | | | 66.7 | 70.7 | 71.6 | 63.5 | | 21-Sep | 67.6 | 72.7 | 69.8 | | 67.0 |) 71. | 4 69 | .9 | 63.1 | | ļ | | 69.5 | | | 67.0 | 71.4 | 69.9 | 63.1 | | 22-Sep | : | | | 59.3 | | | | | 63.0 | | 66.9 | | 69.0 | | | ! | 71.2 | | | | 23-Sep | | | | | | | | | 62.7 | | 66.9 | | 68.9 | | | | 70.9 | | | | 24-Sep | | | | | : | | | | 62.4 | | 66.7 | | 68.8 | | | | 70.8 | | | | 25-Sep | | | | | | | | | 62.7 | | 66.5 | | 67.9 | | | ! | 70.5 | | | | Table 6 | | | | | |---------|-----------------------------|---------------------------------------|---------------------|---------------------------------------| | | ICE HARBOR | LOWER
MONUMENTAL | LITTLE GOOSE | LOWER GRANITE | | DATE | 1993 1994 1995 1996 | 1993 1994 1995 1996 | 1993 1994 1995 1996 | 1993 1994 1995 1996 | | • | 66.2 73.7 67.6
66.4 71.1 | 65.9 70.4
70.3 62.5
66.3 70.4 62.3 | 67.4 | 65.9 70.4 70.3 62.5
66.3 70.4 62.3 | | 28-Sep | 1 | 65.9 70.6 62.3 | 66.1 | 65.9 70.6 62.3 | | 29-Sep | | 62.4 | | 62.4 | | 30-Sep | | 62.9 | | 62.9 | Table 7. Hydroelectric dams of the Columbia Columbia/Snake rivers with miles from the mouth of the river, year placed in operation, and length of reservoir in miles (Mundy et al. 1994). ### Reservoir | Columbia River | Location | on | Year | Length | |-----------------|-------------------|-------------|------|--------| | Bonneville | 145 | 5.5 | 1938 | 46 | | | 1.51957 24 | | | _ | | John Day 215 | <u>.6 1968 76</u> | | | | | McNary 292 | <u>.0 1953 61</u> | | | | | Priest Rapids | 397.1 1959 | <u> 18</u> | | | | Wanapum 415 | <u>.8 1963 38</u> | | | | | Rock Island 453 | <u>.4 1933 21</u> | | | | | Rocky Reach | 473.7 1961 | 42 | | | | Wells 515.1 196 | <u>7 29</u> | | | | | Chief Joseph | 545.1 1955 | 52 | | | | Grand Coulee | 596.6 1941 | <u> 151</u> | | | ## **Snake** River | Ice Harbor | 9.7 | 1961 | 32 | | |--------------|----------------|-------|------|----| | Lower Monu | <u>umental</u> | 41.7 | 1969 | 29 | | Little Goose | 70.0 | 1970 | 37 | | | Lower Gran | ite | 107.6 | 1975 | 39 | | Hells Canyo | n247.0 | 1967 | 22 | | | Oxbow | 273.0 | 1961 | 12 | | | Brownlee | 285.0 | 1958 | 57 | | <u>Table 8. Correlation coefficients between temperature measurements from tri-level thermograph (TLT 8 bottom, middle, and surface), fish ladder (top, bottom, and tailrace), and total dissolved gas (TDG) monitoring locations at Little Goose Dam (LGS), on 77 dates, August 16 – October 31, 1993 - 1996.</u> | <u>1993</u> | | | el <u>Thern</u>
Station 8 | | Fish | <u>Ladde</u> | <u>r</u> | Gas Monitoring Stations | | | | |--|---|---|--|--|-------------------------|-------------------------|---------------------|-------------------------|------------------|--|--| | <u>Scroll</u> | Scroll
case
1.000 | Bottom | Middle | <u>Surface</u> | Tail race | <u>Bottom</u> | <u>Top</u> | TDG1 | TDG2 | | | | case TLT 8B TLT 8M TLT 8S LGS TR LGS Bot LGS Top TDG | 0.699
0.507
0.637
0.660
0.175
0.014
0.339 | 1.000
0.933
0.785
0.657
-0.191
-0.348
0.187 | 1.000
0.777
0.551
-0.221
-0.417
0.042 | 1.000
0.309
-0.367
-0.532
-0.158 | 1.000
0.516
0.308 | 1.000
0.914
0.839 | | | | | | | Mean
St.dev.
N | 66.94
3.16
77 | 67.68
0.94
10 | 68.32
0.69
10 | 66.77
0.68
10 | 0.86 | 68.37
0.80
19 | 68.23
1.11
19 | 69.42
1.64
38 | | | | | <u>1994</u> | | | el <u>Thern</u>
Station 8 | | <u>Fish</u> | <u>Ladde</u> | <u>r</u> | Gas Mo
Stat | nitoring
ions | | | | Scroll
case
TLT 8B | Scroll
case
1.000
0.959 | <u>Bottom</u> <u>1.000</u> | Middle | Surface | Tail race | <u>Bottom</u> | Тор | TDG1 | TDG2 | | | | <u>TLT 8M</u> | <u>0.948</u> | <u>0.992</u> | <u>1.000</u> | | | | | |----------------------|--------------|--------------|--------------|--------------|--------------|--|--------------| | <u>TLT</u> 8S | <u>0.518</u> | <u>0.535</u> | 0.937 | <u>1.000</u> | | | | | <u>LGS</u> <u>TR</u> | 0.989 | <u>0.976</u> | <u>0.964</u> | 0.501 | <u>1.000</u> | | | | LGS Bot | 0.986 | <u>0.975</u> | <u>0.971</u> | 0.684 | <u>0.995</u> | <u>1.000</u> | | | LGS Top | 0.987 | <u>0.974</u> | <u>0.969</u> | <u>0.673</u> | <u>0.996</u> | <u>1.000</u> <u>1.000</u> | | | <u>TDG</u> | <u>0.929</u> | <u>0.561</u> | <u>0.778</u> | <u>0.838</u> | 0.912 | <u>0.930</u> <u>0.943</u> | <u>1.000</u> | | | | | | | | | | | <u>Mean</u> | <u>67.51</u> | <u>66.21</u> | <u>66.62</u> | <u>70.12</u> | <u>66.01</u> | <u>66.62</u> <u>66.89</u> | <u>71.01</u> | | St.dev. | <u>3.834</u> | <u>4.39</u> | <u>4.59</u> | <u>0.73</u> | <u>3.84</u> | 3.89 3.93 | <u>1.50</u> | | <u>N</u> | <u>73</u> | <u>77</u> | <u>77</u> | <u>30</u> | <u>77</u> | <u>77 </u> | <u>22</u> | | <u>1995</u> | | | el Therm
Station 8 | | <u>Fish</u> | <u>Ladde</u> | <u>r</u> | Gas Monitoring
Stations | | | | | |---|-------------------------|-------------------------|-----------------------|---------------------|-------------|---------------|------------|----------------------------|------|--|--|--| | <u>Scroll</u> | Scroll
case
1.000 | <u>Bottom</u> | <u>Middle</u> | <u>Surface</u> | Tail race | <u>Bottom</u> | <u>Top</u> | TDG1 | TDG2 | | | | | case TLT 8B TLT 8M TLT 8S LGS TR LGS Bot LGS Top | 0.273
0.971
0.975 | 1.000
0.940
0.750 | 1.000
0.995 | 1.000 | | | | | | | | | | TDG | 0.404 | <u>0.841</u> | 0.872 | 0.762 | | | | <u>1.000</u> | | | | | | Mean
St.dev.
N | 63.32
4.15
77 | 65.45
0.99
46 | 62.68
4.13
77 | 63.13
4.39
77 | • | <u>0</u> | <u>0</u> | 67.09
0.93
41 | | | | | | <u>1996</u> | | | el Therm
Station 8 | | <u>Fish</u> | Ladde | <u>r</u> | Gas Moi
Stat | | | | | | Scroll | Scroll
case
1.000 | <u>Bottom</u> | <u>Middle</u> | Surface | Tail race | <u>Bottom</u> | <u>Top</u> | TDG1 | TDG2 | | | | | <u>case</u> <u>TLT 8B</u> <u>TLT 8M</u> <u>TLT 8S</u> | 0.838
0.853
0.960 | 1.000
0.997
0.902 | 1.000
0.919 | <u>1.000</u> | | | | | | | | | Table 8. Continued. | LGS TR
LGS Bot
LGS Top
TDG 1
TDG 2 | -0.235
0.214 | -0.822
0.635 | -0.819
0.578 | <u>-0.572</u>
<u>0.239</u> | | | | 1.000
-0.798 | 1.000 | |--|---------------------|---------------------|---------------------|-------------------------------|----------|----------|----------|---------------------|---------------------| | Mean
St. dev.
N | 62.77
4.13
77 | 61.64
3.22
77 | 62.11
3.31
77 | 63.17
4.16
77 | <u>0</u> | <u>0</u> | <u>0</u> | 71.01
1.50
22 | 64.95
2.83
31 | <u>Table 9. Correlation coefficients between temperature measurements from tri-level thermograph (TLT 8 bottom, middle, and surface), fish ladder (top, bottom, and tailrace), and temperature transects at monitoring locations at Little Goose Dam (LGS) from August 16 – October 31, 1991 – 1992.</u> | | Caroll | | <u> Fri-leve</u> | - |----------------|----------------|--------------|----------------------|--------------|--------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|-----------|-----------------| | 1991 | Scroll
Case | | ermogra
Station 8 | | Fis | h Lado | der | Tr | ansect | 5 | Tr | ansect | 6 | Tr | ansect | 7 | Tr | ansect | 8 | Tr | ansect | g | | <u>1331</u> | <u>0000</u> | Bot- | Mid- | Sur- | <u>Tail</u> | Bot- | | Mean | Min | _ | Mean | Min | <u>Max</u> | Mean | Min | _ | Mean | Min | | Mean | Min | <u>∽</u>
Max | | | | tom | dle | face | race | tom | <u>10p</u> | IVICAII | 141111 | IVICA | WCan | 171111 | IVICA | Wican | IVIIII | IVIGA | IVICAII | IVIIII | IVIGA | IVICAII | 141111 | IVICA | | TLT 8B | 0.965 | 1.000 | TLT 8M | 0.965 | 0.999 | 1.000 | TLT 8S | 0.978 | 0.992 | 0.994 | 1.000 | LGS TR | 0.984 | 0.976 | 0.977 | 0.990 | <u>1.000</u> | | | | | | | | | | | | | | | | | | | LGS Bot | LGS Top | 0.978 | 0.973 | 0.974 | 0.984 | 0.996 | | 1.000 | | | | | | | | | | | | | | | | | Tr5 Mean | 0.922 | 0.926 | 0.933 | 0.958 | <u>0.914</u> | | 0.919 | <u>1.000</u> | | | | | | | | | | | | | | | | Tr5 Min | 0.557 | 0.803 | 0.807 | 0.793 | <u>0.593</u> | | 0.619 | 0.742 | 1.000 | | | | | | | | | | | | | | | Tr5 Max | <u>0.975</u> | <u>0.939</u> | 0.944 | <u>0.957</u> | <u>0.987</u> | | <u>0.964</u> | 0.952 | <u>0.572</u> | 1.000 | | | | | | | | | | | | | | Tr6 Mean | 0.855 | 0.850 | 0.862 | 0.925 | <u>0.861</u> | | 0.889 | 0.961 | 0.807 | 0.892 | 1.000 | | | | | | | | | | | | | | | <u>0.688</u> | | | | | 0.863 | <u>0.945</u> | <u>0.805</u> | 0.879 | 0.992 | <u>1.000</u> | | | | | | | | | | | | | | <u>0.884</u> | | | | | | | | | 0.990 | | | | | | | | | | | | | Tr7 Mean | 0.912 | 0.895 | 0.906 | <u>0.944</u> | 0.898 | | <u>0.917</u> | <u>0.955</u> | <u>0.659</u> | <u>0.961</u> | 0.931 | 0.924 | 0.936 | 1.000 | | | | | | | | | | Tr7 <u>Min</u> | 0.872 | <u>0.865</u> | 0.875 | 0.862 | <u>0.878</u> | | 0.859 | 0.925 | 0.707 | 0.918 | 0.942 | 0.938 | 0.930 | 0.978 | 1.000 | | | | | | | | | Tr7 Max | <u>0.925</u> | 0.772 | <u>0.785</u> | <u>0.849</u> | <u>0.917</u> | | 0.938 | <u>0.956</u> | 0.677 | 0.954 | 0.933 | 0.920 | 0.947 | <u>0.986</u> | <u>0.955</u> | <u>1.000</u> | | | | | | | | Tr8 Mean | | | | | | | | | | | | | | <u>0.966</u> | | | | | | | | | | | | <u>0.891</u> | | | | | | | | | | | | 0.957 | | | | | | | | | | · | | <u>0.769</u> | | | | | | | | | | | | <u>0.926</u> | | | | | | | | | | Tr9 Mean | | | | | | | | | | | | | | <u>0.919</u> | | | | | | | | | | | | 0.605 | | | | | | | | | | | | 0.908 | | | | | | | | | | Tr9 Max | 0.990 | <u>0.979</u> | 0.982 | 0.968 | <u>0.974</u> | | <u>0.961</u> | <u>0.911</u> | <u>0.544</u> | 0.963 | <u>0.847</u> | 0.820 | <u>0.876</u> | 0.903 | <u>0.857</u> | 0.928 | <u>0.965</u> | <u>0.937</u> | <u>0.946</u> | 0.982 | 0.938 | <u>1.000</u> | | Mean | 66.3 | 61.3 | 61.4 | 61.7 | 63.9 | | 65.0 | 64.6 | 62.0 | 66.7 | 64.3 | 63.8 | 64.8 | 65.3 | 64.0 | 66.7 | 66.0 | 64.6 | 68.1 | 66.3 | 65.6 | 67.0 | | Stdev | | 3.023 | | | | | | | 2.202 | | 3.064 | | | 4.073 | | | | | 4.347 | | | 3.833 | | <u>N</u> | <u>77</u> | 48 | 48 | 48 | 47 | | 63 | <u>20</u> | 20 | 20 | 20 | <u>20</u> | <u>20</u>
 | <u>Table 9. (</u> | <u>Continu</u> | ıed. |-------------------|----------------|--------------|--------------|--------------|---------------------|-------------|------------|----------------|--------------|--------------|-------------|--------------|--------------|-------------|--------|----------|-------------|--------|----------|----------------|--------|--------------| | <u>1992</u> | <u>Scroll</u> | 1 | Tri-leve | <u> </u> | Fis | h Lado | <u>ler</u> | <u>Tr</u> | ansect | <u>5</u> | <u>Tr</u> | ansect | <u>6</u> | <u>Tr</u> | ansect | <u>7</u> | <u>Tr</u> | ansect | <u>8</u> | <u>Tr</u> | ansect | <u>9</u> | | | <u>Case</u> | | rmogra | Bot- | tation | | Tail | Pot | Ton | Mean | Min | Max | Mean | Min | Max | Moon | Min | May | Moon | Min | May | Mean | Min | Max | | | | tom | Mid-
dle | Sur-
face | <u>Tail</u>
race | Bot-
tom | <u>10p</u> | <u>ivicari</u> | IVIIII | IVIAX | ivicari | <u>Min</u> | IVIAX | <u>Mean</u> | IVIIII | IVIAX | <u>Mean</u> | IVIIII | IVIAX | <u>ivicari</u> | IVIIII | <u>Max</u> | | TLT 8B | 0.962 | | <u> </u> | 1000 | | 10111 | | | | | | | | | | | | | | | | | | TLT 8M | 0.958 | 0.989 | 1.000 | TLT 8S | 0.937 | 0.959 | 0.985 | 1.000 | LGS TR | 0.992 | 0.973 | 0.958 | 0.932 | 1.000 | | | | | | | | | | | | | | | | | | | LGS Bot | 0.984 | 0.955 | 0.959 | 0.969 | 0.988 | 1.000 | | | | | | | | | | | | | | | | | | LGS Top | 0.982 | 0.953 | 0.958 | 0.967 | 0.986 | 0.999 | 1.000 | | | | | | | | | | | | | | | | | Tr5 Mean | 0.902 | 0.965 | 0.958 | 0.938 | 0.911 | 0.924 | 0.922 | 1.000 | | | | | | | | | | | | | | | | Tr5 Min | 0.704 | <u>0.754</u> | 0.688 | <u>0.578</u> | 0.725 | 0.643 | 0.639 | 0.822 | 1.000 | | | | | | | | | | | | | | | Tr5 Max | 0.961 | <u>0.966</u> | 0.988 | 0.996 | <u>0.963</u> | 0.982 | 0.982 | 0.953 | <u>0.670</u> | <u>1.000</u> | | | | | | | | | | | | | | Tr6 Mean | 0.899 | <u>0.951</u> | <u>0.941</u> | 0.925 | <u>0.910</u> | 0.928 | 0.924 | 0.994 | 0.806 | 0.947 | 1.000 | | | | | | | | | | | | | Tr6 Min | 0.903 | <u>0.958</u> | 0.948 | 0.929 | <u>0.914</u> | 0.927 | 0.924 | 0.990 | 0.800 | 0.953 | 0.997 | <u>1.000</u> | | | | | | | | | | | | Tr6 Max | <u>0.896</u> | <u>0.955</u> | 0.944 | <u>0.928</u> | 0.907 | 0.926 | 0.923 | <u>0.991</u> | <u>0.804</u> | <u>0.941</u> | 0.998 | 0.990 | <u>1.000</u> | | | | | | | | | | | Tr7 Mean | Tr7 Min | | | | | | | | | | | | | | 0.996 | | | | | | | | | | Tr7 Max | | | | | | | | | | | | | | 0.992 | | | | | | | | | | Tr8 Mean | Tr8 Min | | | | | | | | | | | | | | 0.968 | | | | | | | | | | Tr8 Max | | | | | | | | | | | | | | 0.969 | | | | | | | | | | Tr9 Mean | Tr9 Min | | | | | | | | | | | | | | 0.937 | | | | | | | | | | Tr9 Max | 0.941 | 0.909 | 0.919 | 0.935 | 0.937 | 0.982 | 0.985 | 0.874 | 0.601 | 0.956 | 0.885 | 0.885 | 0.891 | 0.929 | 0.925 | 0.941 | 0.973 | 0.943 | 0.980 | 0.984 | 0.972 | <u>1.000</u> | | Mean | 65.2 | 67.7 | 68.4 | 68.7 | 64.5 | 65.2 | 65.0 | 66.0 | 62.9 | 67.8 | <u>65.6</u> | 65.2 | 65.9 | 66.6 | 65.8 | 67.3 | 67.1 | 66.1 | 68.3 | 67.2 | 66.8 | <u>67.9</u> | | Stdev | | | | | | | | | | | | | | 5.335 | | | | | | | | | | <u>N</u> | 76 | 44 | 44 | | 77 | 77 | 77 | 13 | 13 | 13 | 13 | 13 | 13 | | 13 | 13 | 13 | 13 | 13 | 13 | 13 | <u>13</u> | | End Tab | <u>le 11.</u> | Table 10. Differences (degrees F) between temperatures recorded at the Lower Granite Dam scroll case and the daily mean, minimum, and maximum transect temperatures recorded immediately upstream (#14) and downstream (#15) of LWG. Differences are expressed as scroll case temperatures minus transect temperatures, therefore a positive number means the scroll case temperature is greater than that at the transects. Also noted are the t-statistics and p-values for a paired-t test between temperatures recorded at the scroll case and mean, minimum, and maximum transect temperatures. Data presented is for the time period from start of data collection (July 23 in 1991 and July 1 in 1992) through September 30. #### <u> 1991</u> | | Trans | sect <u>5</u> (n= | 19) | Transect 6 (n=19) | | | | |------------------|-------------|-------------------|---------------|-------------------|--------------|-------------|--| | Differenc | Mean I | <u> Minimum</u> | <u>Maximu</u> | <u>Mean</u> | Mean Minimum | | | | <u>e</u> | | | <u>m</u> | | | <u>m</u> | | | Mean | <u>2.1</u> | <u>5.6</u> | <u>-0.5</u> | <u>2.5</u> | 3.0 | <u>1.8</u> | | | <u>Min</u> | <u>-0.8</u> | <u>1.3</u> | <u>-2.8</u> | <u>-1.4</u> | <u>-1.4</u> | <u>-1.4</u> | | | Max | 6.4 | <u>13.6</u> | <u>1.5</u> | <u>7.8</u> | <u>8.4</u> | <u>7.4</u> | | | Std Dev | <u>1.7</u> | <u>3.2</u> | <u>1.4</u> | <u>1.9</u> | <u>2.4</u> | <u>2.2</u> | | | T-Stat | <u>4.55</u> | <u>6.05</u> | <u>-1.94</u> | <u>3.93</u> | <u>4.62</u> | <u>2.97</u> | | | P-value | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.01 | | | | Trans | sect <u>5</u> (n= | 28) | Transect 6 (n=27) | | | | |------------------|---------------|-------------------|---------------|-------------------|---------------|-------------|--| | <u>Differenc</u> | <u>Mean</u> I | <u> Minimum</u> | <u>Maximu</u> | <u>Mean</u> | <u>Maximu</u> | | | | <u>e</u> | | | <u>m</u> | | | <u>m</u> | | | Mean | <u>-2.4</u> | <u>1.8</u> | <u>-5.6</u> | <u>-1.6</u> | <u>-1.2</u> | <u>-2.0</u> | | | <u>Min</u> | <u>-6.9</u> | <u>-2.4</u> | <u>-11.7</u> | <u>-4.8</u> | <u>-4.5</u> | <u>-7.4</u> | | | Max | <u>4.0</u> | <u>10.5</u> | 1.0 | <u>4.2</u> | <u>4.4</u> | 4.2 | | | Std Dev | <u>-2.2</u> | <u>2.9</u> | <u>3.5</u> | <u>-1.5</u> | <u>2.3</u> | 2.5 | | | T-Stat | <u>-4.80</u> | <u>3.21</u> | <u>-8.50</u> | <u>-3.58</u> | <u>-2.62</u> | -4.21 | | | P-value | 0.00 | 0.00 | 0.00 | 0.00 | <u>0.01</u> | 0.00 | | Table 11. Differences (degrees F) between temperatures recorded at the lce Harbor Dam scroll case and the daily mean, minimum, and maximum transect temperatures recorded immediately upstream (#14) and downstream (#15) of IHR. Differences are expressed as scroll case temperatures minus transect temperatures, therefore a positive number means the scroll case temperature is greater than that at the transects. Also noted are the t-statistics and p-values for a paired-t test between temperatures recorded at the scroll case and mean, minimum, and maximum transect temperatures. Data presented is for the time period from start of data collection (July 23 in 1991 and July 2 in 1992) through September 30. | | Tran | sect 14 (n: | <u>=19)</u> | <u>Transect</u> 15 (n=19) | | | | | |------------------|-------------|----------------|---------------|---------------------------|----------------|---------------|--|--| | Differenc | <u>Mean</u> | <u>Minimum</u> | <u>Maximu</u> | <u>Mean</u> | <u>Minimum</u> | <u>Maximu</u> | | | | <u>e</u> | | | <u>m</u> | | | <u>m</u> | | | | Mean | 0.3 | <u>1.8</u> | <u>-2.8</u> | <u>0.1</u> | 0.4 | <u>-0.4</u> | | | | <u>Min</u> | <u>-1.7</u> | <u>-0.4</u> | <u>-9.0</u> | <u>-2.4</u> | <u>-1.8</u> | <u>-3.6</u> | | | | <u>Max</u> | 4.6 | <u>7.6</u> | <u>2.4</u> | <u>3.1</u> | <u>3.5</u> | <u>2.7</u> | | | | Std Dev | <u>1.5</u> | <u>1.7</u> | <u>3.2</u> | <u>1.3</u> | <u>1.3</u> | <u>1.6</u> | | | | T-Stat | 0.76 | <u>4.40</u> | <u>-3.80</u> | 0.30 | <u>1.35</u> | <u>-1.20</u> | | | | P-value | 0.45 | 0.00 | 0.00 | 0.77 | <u>0.19</u> | 0.24 | | | | | Tran | <u>sect 14 (n:</u> | <u>=24)</u> | <u>Transect</u> 15 (n=24) | | | | | |------------------|--------------|--------------------|---------------|---------------------------|--------------|----------------|--|--| | Differenc | <u>Mean</u> | <u>Minimum</u> | <u>Maximu</u> | <u>Mean</u> | Minimum N | <u> Maximu</u> | | | | <u>e</u> | | | <u>m</u> | | <u>r</u> | <u>n</u> | | | | Mean | <u>-1.8</u> | <u>-0.1</u> | <u>-4.7</u> | <u>-2.1</u> | <u>-1.8</u> | <u>-2.7</u> | | | | <u>Min</u> | -4.4 | <u>-2.1</u> | <u>-10.4</u> | <u>-5.1</u> | <u>-4.9</u> | <u>-5.9</u> | | | | <u>Max</u> | 0.62 | <u>2.6</u> | 0.4 | 0.4 | <u>0.7</u> | 0.4 | | | | Std Dev | <u>1.5</u> | <u>1.1</u> | <u>3.0</u> | <u>1.5</u> | <u>1.4</u> | <u>1.7</u> | | | | T-Stat | <u>-6.69</u> | <u>-1.08</u> | <u>-8.38</u> | <u>-7.70</u> | <u>-6.96</u> | <u>-8.43</u> | | | | P-value | 0.00 | 0.29 | 0.00 | 0.00 | 0.00 | 0.00 | | | Table 12. Mean annual August – October scroll case temperatures from four Snake River dams. Time averaged and fall chinook weighted temperatures are listed for Ice Harbor Dam, Lower Monumental Dam, Little Goose Dam, and Lower Granite Dam. | | | • | • | | | | | - | | | |---------------------|-----------------|-------------|-----------------|-------------|-----------------|-----------------|--------------------------|-----------------|--|--| | | ICE HARB | <u>OR</u> | L. MONUN | /IENTAL | L. GOOSE | | L. GRANITE | | | | | <u>Year</u> | <u>Time</u> | <u>Fish</u> | <u>Time</u> | <u>Fish</u> | <u>Time</u> | <u>Fish</u> | <u>Time</u> | <u>Fish</u> | | | | | <u>Averaged</u> | Weighted | <u>Averaged</u> | Weighted | <u>Averaged</u> | <u>Weighted</u> | Averaged | <u>Weighted</u> | | | | 4000 | | 20.0 | ļ | | | | | | | | | 1963 | <u>68.2</u> | | | | | | | | | | | 1964
1005 | 63.4 | | | | | - | | | | | | <u>1965</u>
1966 | 64.4
66.4 | | | | | | ŀ | | | | | 1967 | 68.1 | | | | | ł | | | | | | 1968 | 63.2 | | | | | i | | | | | | 1969 | 64.4 | | | | | | | | | | | 1970 | 65.3 | | | | 63.0 | 63.4 | | | | | | 1971 | 66.0 | | 65.4 | 66.1 | 64.4 | | | | | | | 1972 | 65.3 | 64.8 | 65.0 | | 64.7 | 64.9 | | | | | | <u> 1973</u> | 64.6 | <u>65.8</u> | 64.5 | 65.6 | 64.0 | 65.0 | | | | | | <u>1974</u> | <u>65.2</u> | <u>66.5</u> | 65.2 | 65.5 | <u>65.1</u> | 64.7 | | | | | | <u> 1975</u> | <u>68.4</u> | | 64.9 | | 64.7 | | <u>63.</u> | | | | | <u> 1976</u> | 66.3 |
| <u>66.0</u> | | <u>65.9</u> | 66.3 | <u>65.</u> | _ | | | | <u> 1977</u> | <u>65.9</u> | | <u>65.0</u> | | 64.5 | | <u>64.</u> | | | | | <u> 1978</u> | <u>65.0</u> | | 64.6 | | 64.1 | | <u>63.</u> | | | | | <u>1979</u> | <u>68.8</u> | | 68.5 | | <u>68.4</u> | | <u>65.</u> | | | | | <u>1980</u> | <u>66.9</u> | | <u>65.4</u> | | 66.2 | | <u>64.</u> | | | | | <u>1981</u> | <u>66.9</u> | | <u>66.5</u> | | <u>66.6</u> | 66.2 | <u>65.</u> | | | | | <u>1982</u> | <u>65.9</u> | | <u>65.4</u> | | | | <u>64.</u> | | | | | 1983 | <u>66.2</u> | | 66.4 | | | | <u>64.</u> | | | | | 1984 | <u>65.8</u> | | <u>65.1</u> | | | ļ | <u>63.</u> | | | | | 1985 | 64.6 | | 63.6 | | | | <u>62.</u> | | | | | <u>1986</u>
1987 | 66.6
67.4 | | 65.8
66.5 | | | | <u>64.</u>
<u>65.</u> | | | | | 1988
1988 | 67.4
67.2 | | 66.0 | | | ļ | 66. | | | | | 1989 | 66.2 | | 65.5 | | | | 63. | | | | | 1990 | 68.0 | | 67.1 | | | | 66. | | | | | 1991 | 67.4 | | 66.9 | | 66.3 | 65.4 | 64. | | | | | 1992 | 65.5 | | 65.2 | | 65.1 | | 63. | | | | | 1993 | 65.2 | | 65.5 | | 66.9 | | 63. | | | | | 1994 | 65.9 | | 66.2 | | 67.6 | | <u>65.</u> | | | | | 1995 | • | · ——; | <u>64.3</u> | | 63.3 | | <u>61.</u> | | | | Table 13. Migratory timing of fall chinook salmon in the lower snake River, 1963 – 1995. Mean annual fish weighted timing, standard errors (s.e.), and number of fish for each year of record at Ice Harbor Dam, Lower Monumental Dam, Little Goose Dam, and Lower Granite Dam. | | ICE HARBOR | | | | | | <u>L</u> . | GOO | SE | L. GRANITE | | | |--|--|--------------------------------------|--|--|--|--|--|--------------------------------------|--|--|--|--| | <u>Year</u> | Mean | <u>s.e.</u> | <u>N</u> | mean | <u>s.e.</u> | <u>N</u> | mean | <u>s.e.</u> | <u>n</u> | <u>mean</u> | <u>s.e.</u> | <u>N</u> | | <u>Year</u> 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 | Mean 9/21 9/17 9/20 9/18 9/28 9/19 9/20 9/18 9/19 9/23 9/19 9/22 9/18 9/17 9/17 9/20 9/20 9/20 9/20 9/20 9/20 9/20 9/21 9/20 9/21 9/24 9/22 9/20 9/20 | | | i — — — | | | | | | . —. | | | | 1991
1992
1993
1994
1995
1996 | 9/24
9/23
9/21
9/26
9/25 | 0.20
0.28
0.27
0.20
0.23 | 5517
6026
5530
3137
3133
5202
4618 | 9/24
9/22
9/20
9/27
9/28
9/19 | 0.24
0.29
0.31
0.30
0.22
0.24 | 3245
2493
2296
2548
4616
3766 | 9/26
9/22
9/20
9/29
9/27
9/20 | 0.39
0.38
0.37
0.45
0.31 | 1122
1324
1425
1219
2297
2338 | 9/30
9/24
9/20
9/29
9/26
9/22 | 0.42
0.52
0.45
0.48
0.39
0.36 | 992
894
1168
1000
1348
1687 |